
Using Garbage Collection in Model Checking

Radu Iosif1 and Riccardo Sisto1

Dipartimento di Automatica e Informatica, Politecnico di Torino

corso Duca degli Abruzzi 24, 10129 Torino, Italy

iosif@athena.polito.it, sisto@polito.it

http://www.dai-arc.polito.it

Abstract. Garbage collection techniques have become common-place in

actual programming environments, helping programmers to avoid mem-

ory fragmentation and invalid referencing problems. In order to e�ciently

model check programs that use garbage collection, similar functionalities

have to be embedded in model checkers. This paper focuses on the im-

plementation of two classic garbage collection algorithms in dSPIN, an

extension of the model checker SPIN which supports dynamic memory

management. Experiments carried out show that, besides making a large

class of programs tractable, garbage collection can also be a mean to re-

duce the number of states generated by our model checking tool.

1 Introduction

Applying �nite-state veri�cation techniques, such as model checking, to concur-
rent and distributed software systems looks attractive because they are capable
of detecting very subtle defects in the logic design of these systems. Neverthe-
less, the transition of these techniques from research to actual practice is still
slow. One of the reasons is that current �nite-state veri�cation tools still adhere
to a static representation of systems, while programming environments become
more and more dynamic. It is necessary to distinguish here between static and
dynamic program information, the former referring to information that can be
known at compile-time using static analysis techniques (e.g., data
ow analysis),
while the later refers to information that occurs only at run-time. In fact, many

of the optimizations performed in compilers (and lately in software veri�cation
tools [3]) are based on the attempt to over-approximate run-time information
using static analysis techniques. Even if static analysis proves to be useful in
reducing the size of �nite-state program models, there are still cases in which
e�ective reductions can be achieved only at the expense of very complex and
time-consuming analysis. Such cases involve pointer analysis [2] which produces
a conservative approximation of a pointer alias set that is, the set of objects it
may point to at run-time. Besides being very complex, the analysis results can
still be too large to be used in �nite-state veri�cation.

An alternative approach to software veri�cation involves the representation
of dynamic program information directly into the model checking engine. In
order to do that, we have extended the model checker SPIN [7] with a number
of dynamic features, among which:

{ memory references (pointers),
{ dynamic object creation and deletion,
{ function declaration and call,
{ function code references (function pointers).

The extension is called dSPIN (dynamic SPIN) and has been reported in [5].
Even if dSPIN remains a general-purpose model checker, it is intended especially
for software veri�cation, allowing for an easy translation of high-level object-
oriented programming languages (Java, C++) into its input language, which is
a dialect of PROMELA. The size of the transition system is reduced �rst using
a light-weight pointer analysis, and then applying common �nite-state reduc-
tion techniques such as: partial order reductions, state compression, symbolic
representation, etc.

A further step towards improving model checking of software systems is the
introduction of garbage collection techniques in dSPIN. This work is motivated
by the widespread use of garbage collection in real-life software systems, espe-
cially the ones written in Java, where this is the default memory management
policy. Indeed, when unused memory is not reclaimed, the program state space
may experience an unbounded growth that makes analysis impossible. For ex-
ample, let us assume that C represents the name of a class declaration in the
following fragment of Java code:

C x;

while (true) {

...

x = new C();

...

}

If no garbage collection is performed during model checking, every iteration
of the (possibly in�nite) loop will add new states to the program state space.
When the state space is explored in the depth-�rst order, this leads to a very fast
growth of the state space that exhausts the system resources before any useful
results can be given. Instead, when the program model is checked using garbage
collection, the �rst state of the second iteration will (most probably) match the
�rst state of the �rst one and the loop need not be re-explored.

Without using garbage collection, a solution can be explicit memory dele-
tion. However, using explicit deletion has two drawbacks. On one hand, if the
source program does not use explicit deletion statements, inserting such state-
ments into the program model requires expensive pointer analysis. On the other
hand, explicit deletes may result in useless changes of the memory con�guration,
which greatly increases the program state space. Embedding garbage collection
into the model checker proves to be quite easy and it has the advantage of
eliminating both, the need for complex pointer analysis and dangerous memory
fragmentation at the expense of only a small run-time overhead.

It has recently come to our attention that at least one other group is working
on implementing garbage collection in a Java byte-code model checker, the Java
PathFinder tool [6].

The paper is organized as follows: Section 2 recalls background concepts on
dSPIN and garbage collection, Section 3 describes the implementation of two
collection algorithms in dSPIN, Section 4 reports a number of experiments that
have been carried out and Section 5 concludes.

2 Background

In this section we recall background concepts used throughout the paper. In
particular, we present two classic collection algorithms and discuss the data
layout in dSPIN. A detailed report on dSPIN can be found in [5].

In what follows, we denote by garbage [1] any heap-allocated object that is
not reachable by any chain of pointers from program variables. The memory
occupied by garbage should be reclaimed for use in allocating new objects. This
process is called garbage collection and is performed by the program run-time
system, in our case the model checking engine.

2.1 Reference Counting Collection

Most of the garbage collection algorithms identify the garbage by �rst �nding
out what is reachable. Instead, it can be done directly by keeping track of how
many pointers point directly to each object. This is the reference count of the
object and needs to be recorded with each object. More precisely, we need to keep
the reference count for all objects in a separate table, called the reference table.
Figure 1 shows the general structure of reference counting collection algorithms
[1]. Whenever an object reference p is stored into a pointer variable v, the object

procedure GCdec(p)

begin

reference_table [p] --;

if (reference_table [p] == 0)

then begin

for each field f of object p

GCdec(f);

delete(p);

end

end GCdec
procedure GCinc(p)

begin

reference_table [p] ++;

end GCinc

Fig. 1. Reference Counting Collection

reference count is incremented by a call to GCinc(p) and the reference count
of what v previously pointed to is decremented by a call to GCdec(v). If the

decremented count of an object reaches zero then the object is deleted and the
reference counts of all other objects pointed to by its �elds are decremented by
recursive calls to GCdec.

Reference counting seems simple and attractive but there is a major draw-
back: cycles of garbage cannot be reclaimed. Let us consider for example a cyclic
list of objects that is not anymore reachable from program variables. Every cons
of the list will still have the reference count at least one, which prevents it from
being collected.

Considering that a pass of the reference counting collector has collected
Ncollected objects out of a total of Nreachable reachable, the time spent can be
evaluated as tdelete �Ncollected, where tdelete stands for the average object dele-
tion time. The worst-case time of a reference counting collection occurs when all
reachable objects are collected i.e., tdelete �Nreachable. This corresponds to the
case in which all reachable objects have the reference count equal to one, which
makes the collector reclaim them all.

Despite the previously mentioned problem, regarding the impossibility of
reclaiming cyclic-structured data, the cost of a reference counting collection is
quite small which makes the algorithm suitable for use in model checking.

2.2 Mark and Sweep Collection

Program pointers and heap-allocated objects form a directed graph. Program
variables are the roots of this graph, denoted in what follows by the set ROOTS.
A node n in the graph is reachable if there is a path of directed edges leading to
n starting at some root r 2 ROOTS. A graph-search algorithm, such as depth-�rst
search, marks all nodes reachable from all roots. Any node that is not marked
is garbage and must be reclaimed. This is done by a sweep of the heap area,
looking for nodes that are not marked. As said, these nodes are garbage and
they are deleted. The sweep phase should also clear the marking of all nodes, in
preparation for the next collection. Figure 2 shows the mark and sweep collection
algorithm [1]. The marking of all objects are kept in a global mark table used by
both the GCmark and GCsweep procedures.

In order to evaluate the cost of a mark and sweep collection, let us consider
that there areNreachable reachable objects. We denote by Nmax the upper bound
of the heap that is, the maximum number of objects that can be allocated.
The time taken by the mark phase is proportional to the number of nodes it
marks that is, the amount of reachable data. The time taken by the sweep
phase is proportional to the size of the heap. Consequently, the overall time
of the garbage collection is tmark � Nreachable + tdelete � (Nmax � Nreachable),
where tmark is the object marking time and tdelete is the object deletion time,
introduced in the previous section. Once again, this is a worst-case estimation
because in practice, only the number of unreachable existent objects needs to
be deleted by the collector. As this number depends tightly on the program
structure, we have chosen to over-approximate it with the maximum number of
unreachable objects Nmax �Nreachable.

procedure GCmark(r)

begin

if (! mark_table [r])

then begin

mark_table [r] = true;

for each field f of object r

GCmark(f);

end

end GCmark
procedure GCsweep()

begin

for each object p

if (mark_table [p])

then begin

mark_table [p] = false;

delete(p);

end

end GCsweep

Fig. 2. Mark and Sweep Collection

2.3 Overview of dSPIN

In order to make this paper self contained, we need to recall some of the exten-
sions that have been implemented in dSPIN, in particular the ones concerning
dynamic memory management. In dSPIN, memory can be dynamically allocated
and deleted by means of explicit new and delete statements. Dynamically allo-
cated areas will be denoted in what follows as objects. The mechanism to handle
objects in dSPIN is called pointer, as in most programming languages. Seman-
tically, dSPIN pointers resemble to Java references that is, they can be assigned
and the objects they point to can be accessed (dereferenced), but they cannot
be used in arithmetic operations, as it is the case in C. A complete description
of the syntax and semantics of these language constructs can be found in [8].

In dSPIN, the objects that are dynamically allocated reside on a contiguous
memory zone called the heap area. Newly created objects are added at the end
of the heap area. After deleting an existing object, the heap area is compacted
in order to avoid memory losses caused by fragmentation. The object retrieval
information is kept into two tables called the o�set table and the size table. The
�rst table holds the o�set with respect to the beginning of the heap area, while
the second one holds the actual size of the object. In addition, a garbage collector
must be able to operate on objects of all types. In particular, it must be able
to determine the number of �elds in each object, and whether each �eld is a
pointer. Type information is kept for each object in the type table. A pointer
to an object encodes an integer value which is used to index the three tables.
Figure 3 depicts the run-time representation of objects in dSPIN.

Explicit type information is needed at run-time because the input language
of dSPIN allows for free pointer conversion. In other words, conversion between

size
table

type

offset
table

heap
area

index

table

Fig. 3. The Data Layout in dSPIN

any two pointer types is allowed, which makes static type evaluation almost
impossible. Let us point out that type information need not be stored into the
state vector when performing model checking. The o�set, size and type tables
are global data structures that are modi�ed only by the allocation and deletion
statements. As will be discussed in the following, this information needs to be
recorded on the state stack in order to allow the model checker to unwind al-
location/deletion forward moves. The memory overhead introduced by garbage
collection depends only on the maximum stack depth.

3 Implementation Issues

In this section we present issues related to the implementation of the previously

presented collection algorithms, in the dSPIN model checker. In particular, we
address aspects related to the compatibility between these algorithms and the
model checking run-time environment. As the latter di�ers from common run-
time systems, the way its particularities may interact with garbage collection
are considered.

A �rst point that needs attention is the possibility of duplicating regions
of the model checker state space when using garbage collection. For example,
let us consider the situation in which the veri�er generates a state A in which
some objects have become garbage. Let us assume that, like in usual run-time
environments, the garbage collector does not necessarily run immediately after
this state has been generated. In consequence, all its direct successor states, let
us call them B1; B2; : : : ; Bn will maintain the garbage. If, at a later point during
veri�cation, the model checker generates the state A0 that di�ers from A only

by the absence of garbage, the states A and A0 will not match. Consequently,
none of the direct successors of A0, let us call them B0

1
; B0

2
; : : : ; B0

n will match
the states B1; B2; : : : ; Bn respectively. This results in an unwanted duplication
of states, because of garbage collection.

The solution is to run the collection as soon as possible in order to avoid
states containing any garbage at all. In order to do that, we distinguish three
kinds of statements that may produce garbage in dSPIN:

1. pointer assignment; the object previously pointed to by the pointer may
become garbage.

2. exit from function or local scope; the objects pointed to by local pointers
may become garbage.

3. explicit delete; the objects pointed to by the deleted object �elds may become
garbage.

Garbage collection is invoked atomically, as part of the transitions �red by the
statements above. The model checker will experience an increase of the running
time, which is proportional to the overall number of collection attempts.

Another di�erence between a common run-time system and a model checker
regards the possibility of unwinding forward moves. When a model checker,
like SPIN[7], encounters an already visited state it performs a backward move
that matches its last forward move on the trail stack. As result, the model
checker restores the current state to one of its previously visited states. For
simple transitions, as for example assignments, only a small amount of unwinding
information is kept directly on the trail stack. There are however cases in which a
state has to be entirely copied on the stack in order to be used later in performing
a backward move. The model checker keeps a separate stack for states that have
been thoroughly modi�ed by forward moves, denoted as the state stack.

When the garbage collector runs in a transition, it might thoroughly modify
the heap area along with the adjacent tables i.e., the o�set, size and type table.
In order to be able to restore the transition's source state, the model checker
needs to save the entire heap area along with the additional tables on the state
stack. This is needed because it is actually impossible to predict the behavior
of the collector i.e., which objects will be reclaimed. As discussed in Section
2, each garbage collection algorithm keeps some additional information about
heap-allocated objects e.g., the reference table. As the latter will be modi�ed
by a collector run, it also need to be saved on the state stack. This results in a
memory overhead that is proportional with the state stack depth.

The following discussion regards implementation details of each collection
algorithm in particular. An estimation of the time and space overhead introduced
by each algorithm is reported.

3.1 Reference Counting

The reference counting collector keeps in a global table the number of references
to each object. As discussed in Section 2, this is the number of pointers that

directly point to the object. The collector runs whenever the reference number
has become zero for some objects. These objects are deleted, and then the col-
lector runs recursively for all objects pointed to by the deleted objects �elds.
The collection stops when no other reachable object can be deleted. The time
taken by a collector run is at most tdelete � Nreachable, where Nreachable is the
number of objects that are reachable from the set of program pointers, denoted
in what follows by ROOTS, at the point where the collection was attempted.

An interesting property of the reference counting collection regards the pos-
sibility of performing a partial static evaluation of the set ROOTS, depending on
the nature of the statement that might trigger the collection. For pointer assign-
ment statements, the set ROOTS contains only the left-hand side pointer. In this
case, garbage collection has to be attempted before the assignment takes place.
For statements that exit from functions and local scopes, the set ROOTS contains
all the local pointers. The latter situation involves explicit delete statements. In
this case, the set ROOTS contains all pointer �elds of the deleted object. As said
before, the type of an object cannot be statically evaluated, this information
being encoded at run-time into the type table. Depending on the given object
type, the collector identi�es its layout that is, the position of its pointer �elds.

In order to estimate the time overhead introduced by the reference counting
collection, let us denote by Crc the total number of collector runs. This is the
total number of successful collections, which is always less than the total number
of the garbage collector invocations, because the reference counting collector
stops as soon as no object can be deleted. With the above notations, the worst-
case time overhead introduced by the reference counting collection is tdelete �
Nreachable � Crc. The number Nreachable depends on the way program data is
structured. Moreover, it may di�er from one collection to the next one. In order
to be able to evaluate the time of a collection, in what follows we assume that
Nreachable represents an average value.

The space overhead can be estimated considering that every collection re-
quires the saving of the type and reference table on the state stack. In practice,
the size of a type table entry is 4 bytes (integer), while the reference table entry
can be represented on 2 bytes (short). Consequently, each collection introduces a
space overhead of 6�Nmax bytes, where Nmax is the maximum number of heap
objects. If Crc represents the overall number of reference counting collections
performed during model checking, each one needing the save of tables on the
state stack, the space overhead is 6�Nmax � log(Crc). We have approximated
here the maximum depth of the state stack to log(Crc). In practice, the time and
space overheads show to be quite small, therefore we have set reference counting
to be the default garbage collection mode in dSPIN.

3.2 Mark and Sweep

The mark and sweep collection performs a thorough scan of the reachable data
and marks all objects it encounters during the scan. As mentioned in Section 2,
the mark phase starts with the set of all live program pointers ROOTS. This cannot
be anymore statically evaluated, because the stack layout of every process cannot

be statically determined. This problem can be overcome by giving a description
of the global pointers and also the local pointers declared in each proctype or
function. Such a data structure is called a pointer map and is built by the veri�er
generator.

To �nd all the roots, the collector starts at the top of each process stack and
scans downward, frame by frame. Each frame keys the function or proctype that
corresponds to the next frame, giving the entry into the pointer map. In each
frame, the collector marks starting from the pointers in that frame and, in the
end, it marks starting from the global pointers. The mark phase is recursive, the
spanning being done according to the object types, which are kept into the type
table.

When the mark phase completes, the sweep phase deletes all unreachable
data. In order to do that, the entire heap area must be scanned every time the
collector runs. Let us denote by Cms the total number of collector runs. This is
the total number of collector invocations, because the mark and sweep collector
always performs a complete scan of the reachable data every time it is invoked.
With the above notations, the worst-case time overhead introduced by a mark
and sweep collection is (tmark�Nreachable+ tdelete�(Nmax�Nreachable))�Cms.

The space overhead is introduced also by the need to save the type table on
the state stack. As previously explained, the mark table is written by the mark
phase and cleared each time by the sweep phase, therefore we don't need to save
it on the state stack. The size of the type table entry is 4 bytes. Consequently,
the space overhead introduced by a mark and sweep collection is 4�Nmax bytes,
where Nmax is the maximum number of objects. The state is saved on the stack
each time the collection was successful that is, at least one object has been
deleted. We denote this number by Cdel

ms
, therefore the overall mark and sweep

space overhead is 4�Nmax � log(Cdel
ms).

3.3 Overhead Comparison

Given the evaluations for time and space overheads previously introduced, we
attempt to �nd out under which circumstances reference counting collection
is better than mark and sweep or vice-versa. We remind the reader that all
evaluations are related to our implementation of these algorithms in dSPIN.

We denote in what follows, for reference counting, the overall time overhead
by trc = tdelete � Nreachable � Crc and space overhead by src = 6 � Nmax �

log(Crc). For mark and sweep we denote the overall time overhead by tms =
(tmark � Nreachable + tdelete � (Nmax �Nreachable)) � Cms and space overhead
by sms = 4�Nmax � log(Cdel

ms
).

The time overhead comparison is given by:

tms

trc
=
Cms

Crc

�

�
tmark

tdelete
+

Nmax

Nreachable

� 1

�
(1)

The �rst term Cms=Crc is always greater than one, because mark and sweep
runs every time it is invoked, while reference counting stops when no objects

can be deleted. For the second term of the expression we can give a worst-case
evaluation. More precisely, it is greater than one if Nmax � 2�Nreachable. This
gives us a su�cient condition for reference counting collection to run faster than
mark and sweep. We have found that, in practice this condition is usually met
by common programs.

The space overhead comparison is given by:

src

sms

= 1:5�
log(Crc)

log(Cdel
ms

)
(2)

The second term of the expression depends on the program data layout. If the
program does not use cyclic data structures then both collection algorithms
reclaim almost the same number of objects that is, Crc � Cdel

ms and consequently,
src=sms � 1:5. As will be reported in what follows, in practice the space overhead
introduced by mark and sweep is always smaller than the one introduced by
reference counting.

4 Experimental Work

We have carried out a number of experiments in order to asses the practical value
of garbage collection used in combination with model checking. Obviously, an
immediate advantage is tracking down programs that may create an unbounded
number of objects. Moreover, using garbage collection reduces the number of
states in veri�cation and consequently, the model checker time and space re-
quirements.

The �rst part of this section reports experiments that are performed on the
dSPIN speci�cation of a B-tree structure. The reduction in number of states
is compared to the time and space overhead introduced by both collection al-
gorithms. The remainder of this section is concerned with an estimation of the
best and worst case complexity in a doubly linked list example. All analysis time
reports are obtained from the Unix time command on a 256 Mb RAM Ultra-
Sparc 30 at 300MHz workstation. Small times (under 0.5 seconds) tend to be
inaccurate because of the operating system overhead.

4.1 The B-tree Example Revisited

The example considered here is a revision of the test case reported in [5]. The
system describes a B-tree structure that is accessed concurrently by two updater
processes. A mutual exclusion protocol is used in order to ensure the data con-
sistency while allowing for simultaneous updater accesses to the structure. In
order to avoid an unbounded growth of the structure, each updater stops its
execution when a prede�ned maximum depth is reached. The speci�cation was
tested for absence of deadlocks. The example is parameterized with respect to
the following variables:

{ K denotes the B-tree order,

{ D denotes the maximum B-tree depth,

In the �rst case we have explicit delete statements inserted into the model. Table
1 shows the results obtained by performing analysis in presence of explicit delete
statements, �rst without garbage collection, then applying the two collection
algorithms, i.e., reference counting (RC) and mark and sweep (MS), that are
implemented in dSPIN.

Table 1. Explicit Delete B-tree

K,D States Memory (Mb) GC (runs) Time (h:m:s) Options

4620 3.345 - 0:0:1.0 -

4, 2 4620 3.895 RC (0) 0:0:1.4 -

4620 3.712 MS (1591) 0:0:1.2 -

440486 58.062 - 0:1:41.0 COLLAPSE

2, 3 313316 42.858 RC (124) 0:1:39.2 COLLAPSE

237442 31.837 MS (91247) 0:1:08.7 COLLAPSE

5.65413e+07 135.772 - 3:33:37.5 BS (9.49519)

2, 4 5.63116e+07 136.468 RC (25745) 4:11:10.4 BS (9.53393)

5.34694e+07 136.242 MS (33558759) 3:50:04.8 BS (10.0408)

The overall number of collector runs is also presented in the table. For refer-
ence counting, this is the total number of successful collections that is, collections
in which at least one object has been reclaimed. This comes as a consequence
of the fact that reference counting collection stops when it cannot reclaim any
more objects. Instead, mark and sweep collection performs exactly one sweep
of the heap area every time it is invoked. In this case, the number of collector
invocations is the number of collector runs.

It is to be noted that garbage collection acts also as a complexity reduc-
tion mechanism. The explicit delete statements that have been inserted into
the model tend to increase the overall number of states. Our intuition is that
semantically-equivalent states do not match because of di�erent orderings of ob-
jects into the heap area. As garbage collection constantly reduces the number
of objects it also reduces the number of possible interleavings in the heap rep-
resentation. Recently, the implementors of the Java PathFinder tool [6] have
considered the possibility of representing the heap objects in the same way, dis-
regarding their creation order, which makes a further reduction in the number
of states.

In the �rst case (4, 2) garbage collection is ine�cient. Allowing for a maxi-
mum tree depth of 2 implies that no object is ever deleted during an update. In
this case garbage collection introduces only an overhead in memory and space
but does not improve the veri�cation performance. The second case (2, 3) shows
clearly how garbage collection reduces the model checker state space and conse-

quently, its time and space requirements. Due to the fact that in our model, the
B-tree nodes are doubly linked, mark and sweep collection is more e�cient than
reference counting. The latter case (2, 4) was analyzed using bitstate hashing
(BS). Table 1 shows also the hash factor reported by the veri�er (following the
BS). It is to be noted that, in this case, using garbage collection reduces the
state space complexity and improves the hash factor.

The second suite of experiments has been performed by replacing the explicit
deletes with skip statements. Table 2 shows the results. In general, the number
of states experiences a remarkable decrease, because the lack of explicit deletes
makes semantically-equivalent states match in most cases.

Table 2. No Explicit Delete B-tree

K,D States Memory (Mb) GC (runs) Time (h:m:s) Options

637 1.830 - 0:0:0.1 -

4, 2 637 1.920 RC (18) 0:0:0.1 -

637 1.877 MS (161) 0:0:0.1 -

1257 2.497 - 0:0:0.1 -

2, 3 1257 2.587 RC (14) 0:0:0.1 -

1257 2.429 MS (325) 0:0:0.1 -

3025 4.935 - 0:0:0.3 -

4, 3 3025 4.848 RC (20) 0:0:0.3 -

3025 4.013 MS (739) 0:0:0.3 -

23852 11.987 - 0:0:30.3 COLLAPSE, MA

2, 4 23852 11.709 RC (14) 0:0:23.5 COLLAPSE, MA

30346 9.242 MS (7451) 0:0:30.9 COLLAPSE, MA

In this case, using garbage collection does not reduce the state space, rather
tends to slightly increase it, as it is with the case (2, 4) veri�ed using mark
and sweep. However, it is to be noticed that the memory requirements tend to
decrease, as a consequence of the decrease of the current state size. In the case
(4, 2), the memory overhead introduced by the garbage collection balances the
gains, resulting in a greater memory requirement. But, as discussed, the space
overhead introduced by garbage collection tends to increase logarithmically with
the overall number of collections, and therefore with the total number of states.
The following cases (2, 3), (4, 3) and (2, 4) show an actual decrease of memory
taken up by the veri�er when using garbage collection.

4.2 Worst and Best Case Estimation

We have performed a number of experiments in order to give an upper and lower
bound to the e�ciency of the collection algorithms. The test case is a speci�ca-
tion of a doubly linked list which is updated sequentially by one process. The

process does a �xed number of list updates, counted up by an integer variable.
The purpose of the counter variable is to ensure that the number of states does
not change when garbage collection is used. As the value of the counter is in-
cremented at each iteration, the states from the current iteration will not match
the states from previous iterations. The number of states is used as a reference
point in our evaluation.

In the worst case, a �xed number of cons cells is inserted into the list. All
cells are continuously referenced by the head of the list during program runtime,
which makes garbage collection impossible. In the best case, the same number
of cons cells is inserted into the list, but after each insertion, every cell is then
extracted by resetting the list reference to it. No explicit deletes are performed,
the cells being reclaimed only by the garbage collector. Table 3 shows the analysis
results.

Table 3. Worst and Best Case Garbage Collection

GC Runs States Memory (Mb) Time (secs)

i. Worst Case

- - 12242 253.009 20.1

RC 0 12242 295.154 20.9

MS 6119 12242 281.105 26.3

ii. Best Case

- - 16832 386.079 50.9

RC 1530 16832 231.66 17.3

MS 7650 16832 208.252 8.5

It is to be noticed that the worst-case space overhead introduced by reference
counting is greater than the one introduced by mark and sweep. On the other
hand, the worst-case time taken up by the reference counting is smaller than
the one taken up by mark and sweep. In this case both collection algorithms are

ine�cient because they cannot reclaim any object. In the best case, mark and
sweep yields much better results in both space and time than reference counting,
making the analysis more e�cient. This comes as a consequence of the fact that,
in this case, the rate of successful mark and sweep collections is rather big i.e.,
at least one occurs in each iteration.

5 Conclusions

Providing model checkers like dSPIN1 with support for garbage collection al-
lows analysis of a wider class of real-life software systems. This occurs as a

1 The dSPIN source code is distributed via the URL: http://www.dai-arc.polito.it/dai-

arc/auto/tools/tool7.shtml

consequence of the widespread use of garbage collection in current programming
environments. In particular, programs that rely strictly on garbage collection,
like the ones written in Java, tend to create untractable models because of the
unbounded growth of their working memory. Despite a limited run-time overhead
introduced by the collection algorithms, embedding them into model checking
seems to improve the analysis results in general, acting also as a state reduction
mechanism.

When implementing such algorithms in a model checker, attention has to be
paid to the particularities of the model checking environment, such as the possi-
ble backward moves. An evaluation of the time and space overhead introduced
by garbage collection has been given. Although such an evaluation is tightly re-
lated to the layout of the data structures used in the program, worst and best
case estimation can be given. Experiments have been carried out in order to
assess the practical value of our work.

References

1. AndrewW. Appel: Modern Compiler Implementation in Java. Cambridge University

Press, (1998)

2. J. Corbett: Constructing Compact Models of Concurrent Java Programs. Proc. of

International Symposium on Software Testing and Analysis (1998)

3. J. Corbett, M. B. Dwyer et al.: Bandera: Extracting Finite-state Models from Java

Source Code. Proc. 22nd International Conference on Software Engineering (2000)

439{448

4. C. Demartini, R. Iosif, R. Sisto: A deadlock detection tool for concurrent Java

programs. Software: Practice & Experience, Vol 29, No 7 (1999) 577{603

5. C. Demartini, R. Iosif, R. Sisto: dSPIN: A Dynamic Extension of SPIN. Lecture

Notes in Computer Science, Vol. 1680, Springer-Verlag, Berlin Heidelberg New York

(1999) 261{276

6. G. Brat, K. Havelund, S. Park, W. Visser: Java PathFinder: Second Generation of

a Java Model Checker. Workshop on Advances in Veri�cation (2000)

7. G. Holzmann: The Design and Validation of Computer Protocols. Prentice Hall,

(1991).

8. R. Iosif: The dSPIN User Manual. http://www.dai-arc.polito.it/dai-

arc/auto/tools/tool7.shtml

